Apostol 해석적 정수론 CH2. (20~27)

2017. 8. 8. 14:59수학 이론/정수론

1편 : http://drugstoreoftamref.tistory.com/15

2편 : http://drugstoreoftamref.tistory.com/16

I have no time!


D20. Generalized Dirichlet Convolution

for xR,(aF)(x):=nxa(n)F(xn) \text{for } x \in \mathbb{R}, \\ (a \circ F)(x) := \sum_{n \le x} a(n)F(\frac{x}{n})


cf) if xZ F(x)=0  \text{cf) if } \forall x\notin \mathbb{Z} \quad F(x)=0 \ \Rightarrow \ \circ \equiv \ast


T21. a(bF)=(ab)F a \circ (b \circ F) = (a \ast b) \circ F


pf)

a(bF)(x) a \circ (b \circ F) (x)

=nxa(n)(mx/nb(m)F(x/nm)) = \sum_{n \le x} a(n) \cdot \left( \sum_{m \le x/n} b(m)F(x/nm) \right)

=nmxa(n)b(m)F(x/nm) = \sum_{nm \le x} a(n)b(m)F(x/nm)

=kx(dka(d)b(k/d))F(x/k) = \sum_{k \le x} \left( \sum_{d|k} a(d)b(k/d) \right) \cdot F(x/k)

=(ab)F(x)  = (a \ast b) \circ F (x) \ \blacksquare


T22. Generalized Inversion Formula


if a(1)0 (there exists a Dirichlet inversion of a)G=aFF=a1G \text{if } a(1)\neq 0 \text{ (there exists a Dirichlet inversion of a)} \\ G=a \circ F \Leftrightarrow F = a^{-1} \circ G


pf)

a1 G=a1(aF)=(a1a)F=IF=F  a^{-1} \circ G = a^{-1} \circ (a \circ F) = (a^{-1} \ast a) \circ F = I \circ F = F \ \blacksquare


D23. Bell Series 

fp(x):=k=0f(pn)xn f_p (x) := \sum_{k=0}^{\infty} f(p^n)x^n

MF의 성질을 분석하는 데 유용하다고 함.

ex) Ip(x)=1, μp(x)=1x, Np(x)=11px I_p (x) = 1, \ \mu_p (x) = 1-x, \ N_p (x) = \frac{1}{1-px} 

cf) fCMfp(x)=11f(p)xf \in \mathbb{CM} \Rightarrow f_p (x) = \frac{1}{1-f(p)x}


T24. Uniqueness Theorem

f=g   pfp(x)=gp(x) f = g  \ \Leftrightarrow \ \forall p \quad f_p(x) = g_p(x)

pf) 소인수분해를 이용하면 자명.


T25. (fg)p(x)=fp(x)gp(x) (f \ast g)_p (x) = f_p(x) \cdot g_p(x)


pf)

(fg)(pk)=dnf(d)g(pk/d)=i=0kf(pi)g(pki)  (f \ast g)(p^k) = \sum_{d|n} f(d)g(p^k/d) = \sum_{i=0}^{k} f(p^i)g(p^{k-i}) \ \blacksquare


D26. Derivative of Arithmetic Functions

f:=flog f' := f\cdot \log


cf) 미분연산자의 일반적인 조건이 성립

f+g=(f+g) f' + g' = (f+g)'

(fg)=(fg)+(fg) (f \ast g)' = (f' \ast g) + (f \ast g')

(f1)=f(ff)1ff2 (f^{-1})' = -f' \ast (f \ast f)^{-1} \approx -\frac{f'}{f^2}


cf 2)

u=log, I=0,Λu=log=u u' = \log , \ I' = 0 , \Lambda \ast u = \log = u'


T27. Selberg's Identity

cf : An important lemma to prove PNT \text{cf : An important lemma to prove PNT}

Λ(n)log(n)+dnΛ(d)Λ(nd)=dnμ(d)log2(nd) \Lambda(n)\log (n) + \sum_{d|n}\Lambda(d)\Lambda(\frac{n}{d}) = \sum_{d|n} \mu (d) \log^2 (\frac{n}{d})


pf)

 The identity is equivalent to  \text{ The identity is equivalent to }

Λ+ΛΛ=μu \Lambda ' + \Lambda \ast \Lambda = \mu \ast u''

양변에 uu를 합성하면 등식은

Λu+Λ(Λu)=u \Lambda' \ast u + \Lambda \ast (\Lambda \ast u) = u''

D26 cf2 Λu+Λu=u \Leftrightarrow_{\text{D26 cf2}} \ \Lambda' \ast u + \Lambda \ast u' = u''

D26 cf1 (Λu)=u  \Leftrightarrow_{\text{D26 cf1}} \ (\Lambda \ast u)' = u'' \ \blacksquare


Exercise는 시간 될 때!