1편 : http://drugstoreoftamref.tistory.com/15
2편 : http://drugstoreoftamref.tistory.com/16
I have no time!
D20. Generalized Dirichlet Convolution
for x∈R,(a∘F)(x):=n≤x∑a(n)F(nx)
cf) if ∀x∈/Z F(x)=0 ⇒ ∘≡∗
T21. a∘(b∘F)=(a∗b)∘F
pf)
a∘(b∘F)(x)
=∑n≤xa(n)⋅(∑m≤x/nb(m)F(x/nm))
=∑nm≤xa(n)b(m)F(x/nm)
=∑k≤x(∑d∣ka(d)b(k/d))⋅F(x/k)
=(a∗b)∘F(x) ■
T22. Generalized Inversion Formula
if a(1)=0 (there exists a Dirichlet inversion of a)G=a∘F⇔F=a−1∘G
pf)
a−1 ∘G=a−1∘(a∘F)=(a−1∗a)∘F=I∘F=F ■
D23. Bell Series
fp(x):=k=0∑∞f(pn)xn
MF의 성질을 분석하는 데 유용하다고 함.
ex) Ip(x)=1, μp(x)=1−x, Np(x)=1−px1
cf) f∈CM⇒fp(x)=1−f(p)x1
T24. Uniqueness Theorem
f=g ⇔ ∀pfp(x)=gp(x)
pf) 소인수분해를 이용하면 자명.
T25. (f∗g)p(x)=fp(x)⋅gp(x)
pf)
(f∗g)(pk)=∑d∣nf(d)g(pk/d)=∑i=0kf(pi)g(pk−i) ■
D26. Derivative of Arithmetic Functions
f′:=f⋅log
cf) 미분연산자의 일반적인 조건이 성립
f′+g′=(f+g)′
(f∗g)′=(f′∗g)+(f∗g′)
(f−1)′=−f′∗(f∗f)−1≈−f2f′
cf 2)
u′=log, I′=0,Λ∗u=log=u′
T27. Selberg's Identity
cf : An important lemma to prove PNT
Λ(n)log(n)+d∣n∑Λ(d)Λ(dn)=d∣n∑μ(d)log2(dn)
pf)
The identity is equivalent to
Λ′+Λ∗Λ=μ∗u′′
양변에 u를 합성하면 등식은
Λ′∗u+Λ∗(Λ∗u)=u′′
⇔D26 cf2 Λ′∗u+Λ∗u′=u′′
⇔D26 cf1 (Λ∗u)′=u′′ ■
Exercise는 시간 될 때!